

Study program: Integrated Academic Studies in Pharmacy				
Course title: NMR Methods				
Teacher: Mihalj M. Poša, Ana S. Pilipović, Zita J. Farkaš Agatić, Kosta J. Popović				
Course status: elective				
ECTS Credits: 3				
Condition: Organic chemistry 2; Physica	l Chemistry			
Course aim				
Introduce students to the principles of	NMR methods. The applicat	tion of NMR method	s to solve the structure of	organic molecules.
Dynamic kinetic NMR monitoring process. The use of the NMR method of determining the interaction between the drug and the				
receptor.			0	0
Expected outcome of the course:				
Introduce students to the physical and	chemical processes of obta	aining NMR signal a	nd spectrum. Interpretatic	on of NMR spectra.
Students will be able to solve the struct	ure of organic molecules on	the basis of NMR sp	ectra	
Course description				
Theoretical education				
1. Magnetic moment nucleus				
2. Energy nuclei in a magnetic field				
3. Chemical shift				
4. Coupling				
5. Pulse techniques				
6. The resultant magnetic moment vector				
spectral width and speed of the physical and chemical processes				
7. Overhauser effect				
8. 2D NMR				
Practical education				
Interpreting the NMR spectrum, solving	the structures			
Literature				
Compulsory				
1. Hore J. Nuclear magnetic resonance	P Oxford University Press 1	955		
Number of active classes	Theory: 30		Practice: 15	
Teaching methods: lectures, practice				
Student activity assessment (maximally	(100 points)			
Pre-exam activities	points	Final exam	Final exam points	
Lectures	10	Written		
Practices		Oral	Oral	
Colloquium				
Essay	20			
- ·		1		I